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Anti-reset windup is an important tool in the practical implementation of integral controllers.

Integral control can have poor performance due to windup of the integral during transient

periods when the actuator is operating at its saturation limit. Anti-reset windup speeds up the

departure from the saturation limit by stopping the build-up of the integral during saturation.

The most basic form of learning and repetitive control makes use of integral control concepts

applied in the repetition domain. Therefore, this paper studies the use of anti-reset windup

concepts in learning control. The integral is operating in repetitions, but the system dynamics

are in time, making the application nonstandard. Various forms of anti-reset windup are

developed for use in learning and repetitive control, and shown to improve performance of the

learning process, especially when one does not know enough about the system to obtain well

behaved learning transients. Anti-reset windup is also shown to be helpful in situations where

the desired trajectory is not feasible, and in situations where the initial conditions are systemat

ically in error, such as in a robot subject to gravity disturbance.

Key Words: Anti-reset Windup, Saturating Actuators, Saturation Limits, Integral Control,
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1. Introduction

Proportional control systems exhibit a constant

steady-state error in response to a constant com

mand, or to a constant disturbance. In order to

eliminate this error, integral control is often used.

It will not tolerate a constant error since it would

result in a linearly increasing corrective control

action. In practical implementation, integral con

trol can exhibit poor performance when actuator

saturation limits are encountered. The integral

keeps asking for larger control action, but the

hardware stops increasing its output when the

saturation limit is reached. During periods of

saturation, the integral of the error can keep

increasing without having any corresponding

influence on the control applied. Before the con

trol can leave the saturation regime, the integral

must see errors of the opposite sign for an amount

of time needed to negate the accumulated integral.
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This phenomenon is called windup, and various

methods have been introduced to eliminate the

sluggish response that results. These methods are

called anti-reset windup (Astrom, 1984, Witten

mark, 1989). In heuristic terms the interaction of

saturation limits with the integral control action

can cause the controller to get hung up at the

saturation limit, and produce poor performance.

There are a number of approaches to producing

learning and repetitive controllers that learn from

previous experience executing a command, in

order to converge on zero tracking error as the

repetitions of the command progress. The sim

plest form of these algorithms is based on integral

control concepts applied in the repetition domain

(Phan, and Longman, 1988). When a feedback

controller executes a tracking command it usually

produces tracking errors, since it is only rarely

that the particular solution of a differential equa

tion is equal to the command that determines the

forcing function. When the same command is

given repeatedly to the feedback system, it then

produces the same errors at the same time steps,
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except for random disturbance effects. This

appears as a constant error at that time step when

viewed in repetitions. Thus, this form of learning

control introduces the equivalent of an integral at

each time step, applied in the repetition domain

in order to get rid of tracking errors. This type of

learning and repetitive control is very simple to

implement, and requires very little on-line com

putation.

Since this basic form of learning control relies

on integral control concepts, it is natural to ask

whether in practice the use on anti-reset windup

concepts in learning control has advantages. It is

the purpose of this work to investigate this ques

tion.

Integral control-based learning control can

have poorly behaved transients during the learn

ing process, particularly when one does not know

enough about the system to set the gain properly.

Some ad hoc methods of improving the transients

are given in (Chang, Longman, and Phan, 1992).

It is also possible that no learning gain exists that
gives good transient behavior (Elci, Longman,

Ph an, luang, and Ugoletti, 1994). And it may be

possible to get improved tracking accuracy from

learning control without having a stable learning

process, by learning for a limited period of time,

as described in (Longman, and Huang, 1994).

Here we study the possible benefits of using

anti-reset windup (ARW) ideas for the following

purposes in learning and repetitive control:

• Limiting poor transient behavior during

learning, particularly when the gain is poorly set.

• Learning control assumes that the initial

condition is on the desired trajectory. In some

cases, such as robots under gravity, one does not

know how to obtain the desired initial condition,

and may start with whatever initial condition the

robot supplies given the desired position as com

mand to the robot. ARW may be helpful under

these conditions.

• When the desired trajectory is executable

without saturation, but the transients induce satu

ration, AR W may speed the recovery following a

time interval of saturation.

• Sometimes the desired trajectory is not physi

cally executable, such as a unit step command,

because it requires control actions that go beyond

the saturation limit. We study whether ARW may

have advantages in such situations.

2. Anti-Reset Windup in Classical
Control

The basic idea behind AR W is to avoid updat

ing the integral in the feedback controller when

the actuator is saturated. Different approaches

alter the exact conditions for suspending and

resuming integration, and how the integral part is

treated when it is suspended. One method

(Astrom, 1984, Wittenmark, 1989) is shown in

Fig. I for a proportional plus integral controller

as written in the z-transforrn domain. The govern

ing equations are

us(kT) =sat (u (kT»;

u (kT) = u, (kT) + Up (kT)

Up (kT) = K,« (kT);

e (kT) = y* (kT) - y (kT)

u.UcT:«T) = zt;(kT) +K,Te (kT)

+(us(kT)-u(kTllT/a (I)

where Kp denotes the proportional gain, K, the

integral gain, and a a "time constant" for the

anti-reset windup. When the parameter a is cho

sen equal to the sampling time T, and the

actuator is not saturated so that Us (kT) = u

(kT), then the last term in the last of these

equations becomes zero. Then the equation

becomes a recursive computation of the sum of all

previous errors, multiplied by a gain, representing

the discrete form of an integral. If instead the

actuator is saturated, then

Fig. 1 Block diagram for sampled data PI controller
with anti-reset windup.
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u,«, (k) = (!/'±ei(k+ I)
i=l

4. The System Model Used in ARW
Simulations

In this paper we test ARW methods on a

mathematical model of a single robot joint. The

joint angle is 8 (t) and the desired joint angle

specified at sample times is 8* (kT) where T is

(5)

(4)y (k) = Cx (k)

Here U (k) is the learning control action, A is the

closed loop system matrix, and w (k) contains the

command and any disturbance or forcing func

tion that repeats each repetition. The same initial

condition applies at the start of each repetition in

the learning control problem. The integral control

-based learning control is given by the following

sum over the errors observed at the appropriate

time step in all previous repetitions, and can be

calculated in recursive form

Such a sum is computed for each time step of the

desired trajectory. The subscript indicates the

repetition number, which starts at 0 for the first

run using feedback control only, and then with

the first repetition the learning control adjust

ments begin. (1J is the learning gain. Note that the

errors involved are one step ahead of the control

signal to account for the one time step delay of an

input affecting the output in (4). The condition

required for convergence to zero tracking error as

the repetitions progress is that Ill i (I - CB(1J) I< I

for all i, where the Ili are the eigenvalues (Phan,

and Longman, 1988). In scalar-input, scalar

output problems, the product CB is a scalar

whose sign & magnituse one usually knows (at

least roughly), so that one can pick a learning

control gain that satisfies this condition easily.

Note that this condition depends only on the

input and output matrices in discrete time, and is

independent of the system dynamics. Reference

(Elci, Longman, Phan, Juang, and Ugoletti,

1994) discusses a more restrictive condition that

involves knowledge of the system dynamics,

which when satisfied insures well behaved tran

sients.

The first term on the right gives the saturation

limit minus the contribution from the propor

tional control, and the last term on the right can

be thought of as negligible since it is multiplied

by the sample time which is usually small. Thus

the integral action, u., is approximately bounded

by the value that would produce saturation, and

is not allowed to grow beyond that value. The

formula shows that at the first time step for which

the error changes sign, the integral can leave the

saturation limit. This is in contrast to pure inte

gral control where the integral has been allowed

to grow during saturation, and one may need

many steps with an error of the opposite sign in

order to eliminate the accumulated integral. The

extra feedback path introduced in Fig. I does

nothing when the actuator is not saturated, and

when it is saturated, it limits the integral action to

the value producing saturation.

When a is not chosen as T, then (2) becomes

3. Integral Control Based Learning
Control

ui(kT+ T) = (1- T/a) zt;(kT)

+ (T / a) us(kT) + (K,- K p/ a) Te (kT) (3)

ui(kT+ T) =[us(kT) -up(kT)]

+K,Te(kT) (2)

x(k+ 1) =Ax (k) +Bu (k) +w (k)

Ignoring the last term, and recognizing the middle

term on the right as a constant during saturation,

one sees that the first term represents the root of

the associated homogeneous difference equation,

and hence the coefficient determined by a acts

like a time constant, or in this case a forgetting

factor for the contribution of old information in

the sum. When there is considerable noise, and

when derivative action is included in the control

ler, the use of an a larger than T can be benefi

cial.

Reference (Phan, and Longman, 1988)

develops a mathematical framework for linear

learning control including as a special case inte

gral control based learning control. The develop

ment is in a discrete modern control formulation,

which is natural for hardware implementation.
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the sample time. We use a proportional controller

with rate feedback to execute a rotation in the

horizontal plane, so the governing equation can

be written as

(6)

u; is the command to the feedback system, so that

during the first repetition, number 0, it is the

desired trajectory using a zero order hold. For

later repetitions it is adjusted according to learn

ing law (5) in order to converge to that command

that causes the feedback control system to pro

duce the desired trajectory as output.

The inertia chosen corresponds to the inertia

seen by the base joint of the Robotics Research

Corporation K-series 807iHp manipulator shown

in Fig. 2, with the arm fully extended, and carry

ing a point mass load equal to the maximum load

rating of 20 lbs. The feedback controller gains are

chosen to make the robot motion overdamped in

this configuration in order to prevent overshoot

and possible collision. The eigenvalues are cho

sen as -9 and -10. The associated coefficients in

(6) are I=27.3Nms2
, kp=2457, kd=518.7. The

saturation limit for the motor for this joint of the

robot is M1= 247N m, and the sample time is

chosen as 0.02 sec. From the modern state vari

able representation of (6), the stability condition

for convergence to zero tracking error given in the

previous section indicates that the learning gain

must be within the range 0< r})< 126.
The desired trajectory is given in Fig. 3,

together with the error produced by the feedback

controller alone in repetition O. It is the error

between these two curves, which reaches nearly 9

degrees, that the learning control must eliminate.

The desired trajectory is a smooth cycioidal path

for a 90 degree turn followed by a return to the

starting position. The total time of the desired

trajectory is taken as 7 seconds (the number of

sample times p is equal to 350) which causes the

robot link to reach its maximum rated speed of 55

deg per second.

With a learning gain of r})= I, this learning

control converges very quickly and smoothly as

shown in Fig. 4; to the resolution of the figure,

zero error is reached in four repetitions, and the

torque commands do not approach the torque

saturation limit. However, several situations may

apply. One may not know enough about the

system to be able to set the gain a priori for such

good behavior. Or one may not be given the

opportunity to search experimentally for such a

gain. Furthermore, there may not exist a gain that

produces such good behavior as discussed in

(Elci, Longman, Phan, Juang, and Ugoletti,

1994).
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Fig. 3 Desired trajectory and feedback position
output.

201510

---,.
~

~ .~~ 005

~ 0 L.-....:::_~ ~__~ ...J

o

Fig. 2 A seven degree-of-freedom Robotics
Research robot.
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Fig. 4 RMS error when learning gain is 1.



540 Yeong Soon Ryu

Reo.O
Reo.4

- Reo.a
\ ;Rep.I9

.'"
2r----~--~--~--..

E 0z
- Rep.4

Rep.9
-1

0 2 4 6 8

E
i a

Reo.9 \.

-I
a 2 4 6 8

2r-----~--~--....,

Fig. 6 Learning signal for pseudo-saturation limit
M+=M-=2.

TIme(sec.)

Fig. 7 Learning signal for pseudo-saturation limit
M+= 1.6 and M-=O.I.

Time(sec.)

2015105
OL...--------------J
o

0.15

~ 0.1
g
~ 0.05

If instead a learning gain of (/)=2 IS used,

which is still well within the limit of 126 needed

for convergence, the saturation limits are hit

many times during the learning process, and the

resulting RMS tracking errors for all points in a

repetition as a function of repetition are shown in

Fig. 5.

Assuming that one of the above situations

applies, and we are using the learning gain of (/)

=2, we now study three possible modes of apply

ing anti-reset windup ideas to this learning proc

ess with the aim of improving the learning perfor

mance.

Repetition No.

Fig. 5 RMS error with true hardware actuator satu
ration when learning gain is 2.

5. Imposing a Chosen Saturation
Limit on The Learning
Control Signal Alone

If we know that large torques are not required

to perform the trajectory, then it is reasonable to

create artificial limits M+ and M- to impose on

the learning control signal to prevent it from

applying large torques. It is then reasonable to

include anti-reset windup. The system equations

become

Ie~+ kd 8j + kp8j= kpucs,j

UC,j+! (kT) = UCS,j (kT) + (/)ej ((k + I) T) (7)

1
M+ijUC,j(kT) >M+

UCS,j(kT) = - M-z!UC,j(kT) < - M-

= Sat (UC,j (kT) UC,j(kT) otherwise

Figure 6 shows the learning control signal

history for the 4th, 9th, and 19th repetitions with

M+ = M- =2. The result is unaffected by the

saturation limit since it never reaches this value.

Decreasing the limit to M+= 1.6 and M-= -0.1

produces Fig. 7. The limits successfully influence

the peak errors both positive and negative.

Although the figure is somewhat difficult to read,

it is clear that introducing the limits also causes

more violent changes in the portion of the trajec

tory to the right of the peak where it is no longer

saturated. This suggests that a more sophisticated

rule is needed.

6. Applying ARW on the True DC
Motor Saturation Limit

We now apply the full concepts of anti-reset

windup underlying Eq. (I). The integral action is

operating in repetitions, and the feedback signal

is operating in time. At any given time step of a

given repetition it is the sum of these that must be

applied by the actuator. To obtain anti-reset

windup to prevent the windup of the integral

action in repetitions, we need to subtract off the

contribution of the feedback signal. The result is

in the same form as Eq. (7), except that the limits
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Fig. 8 RMS error for the DC motor limit saturation.

Repetition No.

Fig. 9 RMS error for the adaptive saturation limit.

M+ and M- now become time-step dependent

based on the feedback signal

M+(kT) = t1 + 8j(kT) + Z: ()j(kT)

M- (kT) = -: + 8j(kT) + Z: ()j(kT) (8)

Figure 8 presents the results. This is to be

compared to Fig. 5 which does not have ARW,

and we see that there is a significant improvement

in learning behavior. We know that the learning

process is convergent to zero tracking error. But

as discussed in (Longman, and Huang, 1994) we

may wish to freeze the learning signal when the

RMS error has reached a local minimum that

represents substantial improvement as in the

region from repetitions 4 to 7. It is clear from the

comparison of Figs. 5 and 8 that the use of ARW

in learning control can be of help in improving

the transients during the learning process.

7. Using an Adaptive Saturation Limit
in ARW

control need not learn quickly.

In most applications employing a feedback

controller, this controller will do a reasonably

good job, although it leaves errors that a learning

controller can fix. This suggests that during the

learning process there is no need for the torque

history to make large excursions away from a

pure feedback torque history. Therefore, we

record the torque input history produced on the

first repetition when there is no learning control

signal, and then during the repetitions that fol

low, the torque at each time step k is not allowed

to deviate more than some prescribed amount

from the recorded feedback torque at that time

step. We can start with the limits being very tight,

and then relax them as needed. If we are on the

desired trajectory when we reach the chosen satu

ration limits, then we know we must extend the

limit. One can generate many schemes of this

general type. The following one is designed to

operate rather quickly, by using the current feed

back control signal

It starts with limits M2=20 around the feed

back signal for repetition zero, and when the

value is increased at a certain time step because

the trajectory hits the limit, the limit is not all

owed to increase again until 10 time steps have

passed (Chang, 1994). Figure 9 shows the result-

In many applications it may be desirable to

keep the transients under very tight control, pos

sibly at the expense of taking a significantly lon

ger time to learn. For example, it could be very

expensive to shut down an assembly line in order

to conduct learning control repetitions to improve

some part of the process. However, if one could

learn during assembly line operation, and guaran

tee that the learning process would not cause the

production of products that must be scrapped

because they do not meet the required specifica

tions, then one would be happy to use learning

control to improve the product, and the learning

M/(kT) UFB.j(kT) +M2.j(k)
kp

+ 8j(kT) + Z: ()j(kT)

UFB.j(kT) -M2.j(k)
kp

+ 8j(kT) + Z: ()j(kT) (9)
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ARW

Yj(k+ I) =0.99Yj(k) +O.Olucs.j(k) (10)
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Fig. 11 Input torque for step 2 in initial condition
mismatch case.

0.02

Tunesteps

Fig. 10 Desired trajectory for 5 step trajectory.

The initial condition is Yj(l) =0.1, but we wish it

to be zero. The integral control based learning

control will converge with learning gains in the

range 0< o< 200. We pick ([)=50. We apply

learning control with ARW in the form of Eq.

(5) with M+=M-=3. This value is chosen so

that it is impossible for the system to correct the

error in the first time step, but by the second time

step it is capable of having zero tracking error.

Figure 10 shows the 5 time step desired trajec

tory, and Fig. II shows the resulting torque

histories for time step 2 as a function of repetition

number, for the ARW case and for the case of

results in going to the wrong position. If one does

not do some kind of learning control to find out

how to reach the desired initial condition, then

systematic errors exist that can saturate the

actuator during the first time step or steps.

We study the use of ARW for this situation.

For simplicity of understanding we pick a differ

ent problem to simulate consisting of learning

during the first few steps with a system given by

ing RMS errors as a function of repetition. The

learning process has been slowed down, and

better behavior is obtained for later repetitions

than in Fig. 8.

There are other versions of this general

approach. It is interesting to note that we started

with the intent of seeing the usefulness of anti

-reset windup ideas in learning control. Such

thinking has led us to methods in this section that

appear very similar to methods obtained in

(Chang, Longman, and Phan, 1992), and in more

detail in (Chang, 1994), obtained by ad hoc

thinking.

In the present section and the two previous

sections, we have addressed the use of ARW ideas

in learning control, when the desired trajectory is

executable by the system within the hardware

saturation limit, but transients may cause satura

tion. We have also seen that ARW can be effec

tive in facilitating smooth learning. In learning

control there are two other situations in which

ARW might be of help: handling repetitive errors

in the initial conditions, and recovery from satu

ration in a nonfeasible trajectory.

A basic assumption of learning control is that

the system returns to the same desired initial

condition after every repetition of the command,

before the start of the next repetition. Presumably

this initial condition is on the desired trajectory.

The difficulties of having incorrect initial condi

tions in learning control are discussed in (Hein

zinger, Fenwick, Paden, and Miyasaki, 1989,

Arimoto, 1990, Arimoto, Naniwa, and Suzuki,

1991, Bien, and Lee, 1991). We can have initial

condition errors of two kinds. There may be

random effects that cause different initial condi

tions on different repetitions. There can also be

systematic errors that produce the wrong initial

conditions every time (Elci, Longman, Phan,

Juang, and Ugoletti, 1994 ). The latter occurs in

robots subject to gravity, which disturbs the feed

back control system. Commanding the desired

starting point to the feedback control system

8. ARW Applied with an Initial Condi
tion Mismatch
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Fig. 12 Error for step 2 in initial condition mismat
ch case.

actuator saturation only. This figure shows that

the ARW case leaves saturation after repetition I,

but without ARW, the learning control action

remains saturated until after repetition I I. Figure

12 shows the corresponding error for time step 2

as a function of repetition number, for the ARW

case and for the case of actuator saturation only.

Thus, ARW is shown to be very effective.

In (Heinzinger,· Fenwick, Paden, and Miyasa

ki, 1989, Arimoto, 1990, Arimoto, Naniwa, and

Suzuki, 1991) the use of a forgetting factor is

suggested as a means of improving the perfor

mance with initial condition mismatch. The learn

ing control suggested takes the form

Uj(k) = (1- a) Uj-l (k) +au s (k) + (]Jej-l (k+ 1)

(II)

where ub(k) is the learning history from the past

having the best error, and the forgetting factor lies

in the range 0< «< I. The rule does not consider

saturation limits. Applying this rule to the exam

ple under discussion did not produce any

improvement of the learning. It resulted in the

same error histories as with learning control

alone, staying at saturation until after repetition

II. The best learning history was always the

latest, so (II) reduces to the standard learning

control.

9. ARW in Learning Control with a
Nonfeasible Desired Trajectory

It is a common situation that the only trajectory

that one can state as being the desired trajectory is

one that no physical system can perform, e. g.

performing a perfect right angle turn at constant

Repetition No.
Fig. 13 Input torque for step 12 in nonfeasible

desired trajectory case.

velocity in welding with a robot. Learning con

trol will not be able to produce zero tracking

errors in such situations due to the actuator satu

ration limits. However, from the results of the

previous section we expect that AR W can

improve the tracking performance of a learning

controller immediately after the nonfeasible por

tion of the trajectory. During the necessarily

saturated portion of the trajectory, there can be

no difference between pure learning control and

ARW. ARW will stop the windup, but this has

no physical implications since the windup is

occurring only in the controller (unless it causes

overflow in a digital controller). Just as in the

response to initial condition errors, ARW

improves the recovery behavior for subsequent

time steps in which the system can again follow

the commanded trajectory.

We consider a unit step command. of zero for

time steps up through 10 and I for time steps

thereafter, applied to (10). This time we pick the

learning gain (]J= 100 and the saturation value M
=50. The desired trajectory requires a torque

history that is zero at all time steps except time

step 10, at which the torque must be 100.

Steps 10 and II remain saturated throughout

the repetitions. Figure 13 shows the input torque

for time step 12. On the initial rise the dashed

curve coincides with the solid curve, and for the

next repetition, the dashed curve stays at 50 before

coming down over the next two repetitions.

Again, we see that ARW gives faster recovery in

time steps after the end of a time period in which

the actuators must be saturated, compared to pure

learning control applied to the system actuator
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10. ARW in Integral Control Based
Repetitive Control

Huang, 1994). Use of anti-reset windup on this

problem produces Fig. 15 exhibiting much im

proved performance.

11. Conclusions
In repetitive control the command is a periodic

function of time. It differs from learning control

in the sense that the system need not return to the

same initial condition before the next repetition

starts. Transients can propagate from one period

into the next, and this produces a more difficult

stability problem for the learning process. The

extension of the results above to this case is

immediate. The ARW repetitive control analo

gous to (7) for a process of period p steps is

18 (t) +kd 8(t) +kp8 (t) = kpucs (t)
Uc(kT+ (j+ I) pT) =ucs<kT+ jpT)
+ (1)e «k+ I) T+ jpT)

{

M+i!udkT+jp»M+
ucs(kT+jp) = -M- i!uc(kT+jp) < -M-

= Sat (uc(kT +jp») udkT+ jp)otherwise
(12)

where ucs(t) employs a zero order hold. Fig

ure 14 shows the RMS error plot for the repetitive

control problem analogous to Fig. 5, using hard

ware saturation limits and a learning gain of 2.

Although the learning process for the learning

control problem is known to be convergent, it is

more difficult to test for stability of repetitive

control problems, and they are more likely not to

be convergent. However, it is very often the case

that the error decreased significantly before it

increases, and therefore, one can use the method

to decrease the error to a minimum, and then

freeze the repetitive control signal (Longman, and

In this paper we have studied the use of anti

reset windup ideas to improve the performance of

integral control-based learning control. An issue

that has received some attention in the literature

is initial condition mismatch in learning control.

It is shown here that use of anti-reset windup is

particularly helpful in speeding up the conver

gence of the learning operation in such cases.

Similarly, anti-reset windup is shown to be effec

tive in situations where the desired trajectory is

not feasible and requires actuator output beyond

the saturation limits. Anti-reset windup was also

investigated to improve the learning transients

when the desired trajectory does not require

inputs above the actuator saturation limit, but the

transients request actuator outputs above this

limit. The approach is of more limited use in this

situation. It is shown that anti-reset windup can

improve the transients, and this can be useful

when one uses learning control for a limited

number of repetitions, and then freezes the

learned signal at one that produces good results.
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